

Table of Contents

About the book 4 ..
About the author 5 ...
Sponsors 6 ..
Ebook PDF Generation Tool 8 ...
Book Cover 9 ..
License 10 ..

Introduction to Docker 11 ..
What is a container? 13 ..
What is a Docker image? 14 ...
What is Docker Hub? 15 ...

Installing Docker 16 ...

Working with Docker containers 18 ..
Pulling an image from Docker Hub 21 ..
Stopping and restarting a Docker Container 24
Accessing a running container 25 ..
Deleting a container 26 ..

What are Docker Images 27 ...
Working with Docker images 28 ...
Modifying images ad-hoc 30 ...
Pushing images to Docker Hub 32 ..
Modifying images with Dockerfile 35 ..
Docker images Knowledge Check 36 ...

What is a Dockerfile 37 ...
Dockerfile example 38 ..
Docker build 41 ..
Dockerfile Knowledge Check 43 ...

Docker Network 44 ..
Creating a Docker network 45 ..
Inspecting a Docker network 46 ...
Attaching containers to a network 47 ..

What is Docker Swarm mode 49 ..
Docker Services 50 ...
Building a Swarm 51 ..

Managing the cluster 54 ...
Promote a worker to manager 56 ...
Using Services 57 ...
Scaling a service 59 ...
Deleting a service 61 ..
Docker Swarm Knowledge Check 62 ..

Conclusion 63 ...
Other eBooks 64 ...

4

About the book

This version was published on October 27 2021

This is an open-source introduction to Docker guide that will help you
learn the basics of Docker and how to start using containers for your
SysOps, DevOps, and Dev projects. No matter if you are a
DevOps/SysOps engineer, developer, or just a Linux enthusiast, you will
most likely have to use Docker at some point in your career.

The guide is suitable for anyone working as a developer, system
administrator, or a DevOps engineer and wants to learn the basics of
Docker.

5

About the author

My name is Bobby Iliev, and I have been working as a Linux DevOps
Engineer since 2014. I am an avid Linux lover and supporter of the
open-source movement philosophy. I am always doing that which I
cannot do in order that I may learn how to do it, and I believe in sharing
knowledge.

I think it's essential always to keep professional and surround yourself
with good people, work hard, and be nice to everyone. You have to
perform at a consistently higher level than others. That's the mark of a
true professional.

For more information, please visit my blog at https://bobbyiliev.com,
follow me on Twitter @bobbyiliev_ and YouTube.

https://bobbyiliev.com
https://twitter.com/bobbyiliev_
https://www.youtube.com/channel/UCQWmdHTeAO0UvaNqve9udRw

6

Sponsors

This book is made possible thanks to these fantastic companies!

Materialize

The Streaming Database for Real-time Analytics.

Materialize is a reactive database that delivers incremental view
updates. Materialize helps developers easily build with streaming data
using standard SQL.

DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at
scale.

It provides highly available, secure, and scalable compute, storage, and
networking solutions that help developers build great software faster.

Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources
available.

For more information, please visit https://www.digitalocean.com or
follow @digitalocean on Twitter.

If you are new to DigitalOcean, you can get a free $100 credit and spin
up your own servers via this referral link here:

Free $100 Credit For DigitalOcean

https://materialize.com/
https://www.digitalocean.com
https://twitter.com/digitalocean
https://m.do.co/c/2a9bba940f39

7

DevDojo

The DevDojo is a resource to learn all things web development and web
design. Learn on your lunch break or wake up and enjoy a cup of coffee
with us to learn something new.

Join this developer community, and we can all learn together, build
together, and grow together.

Join DevDojo

For more information, please visit https://www.devdojo.com or follow
@thedevdojo on Twitter.

https://devdojo.com?ref=bobbyiliev
https://www.devdojo.com?ref=bobbyiliev
https://twitter.com/thedevdojo

8

Ebook PDF Generation Tool

This ebook was generated by Ibis developed by Mohamed Said.

Ibis is a PHP tool that helps you write eBooks in markdown.

https://github.com/themsaid/ibis/
https://github.com/themsaid

9

Book Cover

The cover for this ebook was created with Canva.com.

If you ever need to create a graphic, poster, invitation, logo,
presentation – or anything that looks good — give Canva a go.

https://www.canva.com/join/determined-cork-learn

10

License

MIT License

Copyright (c) 2020 Bobby Iliev

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

11

Introduction to Docker

It is more likely than not that Docker and containers are going to be
part of your IT career in one way or another.

After reading this eBook, you will have a good understanding of the
following:

What is Docker
What are containers
What are Docker Images
What is Docker Hub
How to installing Docker
How to work with Docker containers
How to work with Docker images
What is a Dockerfile
How to deploy a Dockerized app
Docker networking
What is Docker Swarm
How to deploy and manage a Docker Swarm Cluster

I'll be using DigitalOcean for all of the demos, so I would strongly
encourage you to create a DigitalOcean account to follow along. You
would learn more by doing!

To make things even better you can use my referral link to get a free
$100 credit that you could use to deploy your virtual machines and test
the guide yourself on a few DigitalOcean servers:

DigitalOcean $100 Free Credit

Once you have your account here's how to deploy your first

https://m.do.co/c/2a9bba940f39

12

Droplet/server:

https://www.digitalocean.com/docs/droplets/how-to/create/

I'll be using Ubuntu 21.04 so I would recommend that you stick to the
same so you could follow along.

However you can run Docker on almost any operating system including
Linux, Windows, Mac, BSD and etc.

https://www.digitalocean.com/docs/droplets/how-to/create/

13

What is a container?

According to the official definition from the docker.com website, a
container is a standard unit of software that packages up code and all
its dependencies so the application runs quickly and reliably from one
computing environment to another. A Docker container image is a
lightweight, standalone, executable package of software that includes
everything needed to run an application: code, runtime, system tools,
system libraries, and settings.

Container images become containers at runtime and in the case of
Docker containers - images become containers when they run on
Docker Engine. Available for both Linux and Windows-based
applications, containerized software will always run the same,
regardless of the infrastructure. Containers isolate software from its
environment and ensure that it works uniformly despite differences for
instance between development and staging.

docker.com

14

What is a Docker image?

A Docker Image is just a template used to build a running Docker
Container, similar to the ISO files and Virtual Machines. The containers
are essentially the running instance of an image. Images are used to
share containerized applications. Collections of images are stored in
registries like DockerHub or private registries.

https://hub.docker.com/

15

What is Docker Hub?

DockerHub is the default Docker image registry where we can store
our Docker images. You can think of it as GitHub for Git projects.

Here's a link to the Docker Hub:

https://hub.docker.com

You can sign up for a free account. That way you could push your
Docker images from your local machine to DockerHub.

https://hub.docker.com

16

Installing Docker

Nowadays you can run Docker on Windows, Mac and of course Linux. I
will only be going through the Docker installation for Linux as this is my
operating system of choice.

I'll deploy an Ubuntu server on DigitalOcean so feel free to go ahead
and do the same:

Create a Droplet DigitalOcean

Once your server is up and running, SSH to the Droplet and follow
along!

If you are not sure how to SSH, you can follow the steps here:

https://www.digitalocean.com/docs/droplets/how-to/connect-with-ssh/

The installation is really straight forward, you could just run the
following command, it should work on all major Linux distros:

wget -qO- https://get.docker.com | sh

It would do everything that's needed to install Docker on your Linux
machine.

After that, set up Docker so that you could run it as a non-root user with
the following command:

sudo usermod -aG docker ${USER}

https://docs.digitalocean.com/products/droplets/how-to/create
https://www.digitalocean.com/docs/droplets/how-to/connect-with-ssh/

17

To test Docker run the following:

docker version

To get some more information about your Docker Engine, you can run
the following command:

docker info

With the docker info command, we can see how many running
containers that we've got and some server information.

The output that you would get from the docker version command
should look something like this:

In case you would like to install Docker on your Windows PC or on your
Mac, you could visit the official Docker documentation here:

https://docs.docker.com/docker-for-windows/install/

And:

https://docs.docker.com/docker-for-mac/install/

That is pretty much it! Now you have Docker running on your machine!

Now we are ready to start working with containers! We will pull a
Docker image from the DockerHub, we will run a container, stop it,
destroy it and more!

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-mac/install/

18

Working with Docker
containers

Once you have your Ubuntu Droplet ready, ssh to the server and
follow along!

So let's run our first Docker container! To do that you just need to run
the following command:

docker run hello-world

You will get the following output:

19

We just ran a container based on the hello-world Docker Image, as
we did not have the image locally, docker pulled the image from the
DockerHub and then used that image to run the container. All that
happened was: the container ran, printed some text on the screen
and then exited.

Then to see some information about the running and the stopped
containers run:

docker ps -a

You will see the following information for your hello-world container
that you just ran:

https://hub.docker.com

20

root@docker:~# docker ps -a
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
62d360207d08 hello-world "/hello" 5
minutes ago Exited (0) 5 minutes ago
focused_cartwright

In order to list the locally available Docker images on your host run the
following command:

docker images

21

Pulling an image from Docker Hub

Let's run a more useful container like an Apache container for
example.

First, we can pull the image from the docker hub with the docker pull
command:

docker pull webdevops/php-apache

You will see the following output:

Then we can get the image ID with the docker images command:

docker images

The output would look like this:

22

Note, you do not necessarily need to pull the image, this is just for
demo purposes. When running the docker run command, if the image
is not available locally, it will automatically be pulled from Docker Hub.

After that we can use the docker run command to spin up a new
container:

docker run -d -p 80:80 IMAGE_ID

Quick rundown of the arguments that I've used:

-d: it specifies that I want to run the container in the background.
That way when you close your terminal the container would remain
running.

-p 80:80: this means that the traffic from the host on port 80
would be forwarded to the container. That way you could access
the Apache instance which is running inside your docker container
directly via your browser.

With the docker info command now we can see that we have 1 running
container.

And with the docker ps command we could see some useful
information about the container like the container ID, when the
container was started, etc.:

23

root@docker:~# docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
7dd1d512b50e fd4f7e58ef4b "/entrypoint supervi…"
About a minute ago Up About a minute 443/tcp,
0.0.0.0:80->80/tcp, 9000/tcp pedantic_murdock

24

Stopping and restarting a Docker Container

Then you can stop the running container with the docker stop command
followed by the container ID:

docker stop CONTAINER_ID

If you need to, you can start the container again:

docker start CONTAINER_ID

In order to restart the container you can use the following:

docker restart CONTAINER_ID

25

Accessing a running container

If you need to attach to the container and run some commands inside
the container use the docker exec command:

docker exec -it CONTAINER_ID /bin/bash

That way you will get to a bash shell in the container and execute
some commands inside the container itself.

Then, to detach from the interactive shell, press CTRL+PQ. That way you
will not stop the container but just detach it from the interactive shell.

26

Deleting a container

To delete the container, first make sure that the container is not
running and then run:

docker rm CONTAINER_ID

If you would like to delete the container and the image all together, just
run:

docker rmi IMAGE_ID

With that you now know how to pull Docker images from the Docker
Hub, run, stop, start and even attach to Docker containers!

We are ready to learn how to work with Docker images!

27

What are Docker Images

A Docker Image is just a template used to build a running Docker
Container, similar to the ISO files and Virtual Machines. The containers
are essentially the running instance of an image. Images are used to
share containerized applications. Collections of images are stored in
registries like DockerHub or private registries.

28

Working with Docker images

The docker run command downloads and runs images at the same
time. But we could also only download images if we wanted to with the
docker pull command. For example:

docker pull ubuntu

Or if you want to get a specific version you could also do that with:

docker pull ubuntu:14.04

Then to list all of your images use the docker images command:

docker images

You would get a similar output to:

The images are stored locally on your docker host machine.

To take a look a the docker hub, go to: https://hub.docker.com and you
would be able to see where the images were just downloaded from.

For example, here's a link to the Ubuntu image that we've just
downloaded:

https://hub.docker.com

29

https://hub.docker.com/_/ubuntu

There you could find some useful information.

As Ubuntu 14.04 is really outdated, to delete the image use the docker
rmi command:

docker rmi ubuntu:14.04

https://hub.docker.com/_/ubuntu

30

Modifying images ad-hoc

One of the ways of modifying images is with ad-hoc commands. For
example just start your ubuntu container.

docker run -d -p 80:80 IMAGE_ID

After that to attach to your running container you can run:

docker exec -it container_name /bin/bash

Install whatever packages needed then exit the container just press
CTRL+P+Q.

To save your changes run the following:

docker container commit ID_HERE

Then list your images and note your image ID:

docker images ls

The process would look as follows:

31

As you would notice your newly created image would not have a name
nor a tag, so in order to tag your image run:

docker tag IMAGE_ID YOUR_TAG

Now if you list your images you would see the following output:

32

Pushing images to Docker Hub

Now that we have our new image locally, let's see how we could push
that new image to DockerHub.

For that you would need a Docker Hub account first. Then once you
have your account ready, in order to authenticate, run the following
command:

docker login

Then push your image to the Docker Hub:

docker push your-docker-user/name-of-image-here

The output would look like this:

33

After that you should be able to see your docker image in your docker
hub account, in my case it would be here:

https://cloud.docker.com/repository/docker/bobbyiliev/php-apache

https://cloud.docker.com/repository/docker/bobbyiliev/php-apache

34

35

Modifying images with Dockerfile

We will go the Dockerfile a bit more in depth in the next blog post, for
this demo we will only use a simple Dockerfile just as an example:

Create a file called Dockerfile and add the following content:

FROM alpine
RUN apk update

All that this Dockerfile does is to update the base Alpine image.

To build the image run:

docker image build -t alpine-updated:v0.1 .

Then you could again list your image and push the new image to the
Docker Hub!

36

Docker images Knowledge Check

Once you've read this post, make sure to test your knowledge with this
Docker Images Quiz:

https://quizapi.io/predefined-quizzes/common-docker-images-questions

Now that you know how to pull, modify, and push Docker images, we
are ready to learn more about the Dockerfile and how to use it!

https://quizapi.io/predefined-quizzes/common-docker-images-questions

37

What is a Dockerfile

A Dockerfile is basically a text file that contains all of the required
commands to build a certain Docker image.

The Dockerfile reference page:

https://docs.docker.com/engine/reference/builder/

It lists the various commands and format details for Dockerfiles.

https://docs.docker.com/engine/reference/builder/

38

Dockerfile example

Here's a really basic example of how to create a Dockerfile and add
our source code to an image.

First, I have a simple Hello world index.html file in my current directory
that I would add to the container with the following content:

<h1>Hello World - Bobby Iliev</h1>

And I also have a Dockerfile with the following content:

FROM webdevops/php-apache-dev
MAINTAINER Bobby I.
COPY . /var/www/html
WORKDIR /var/www/html
EXPOSE 8080

Here is a screenshot of my current directory and the content of the
files:

39

Here is a quick rundown of the Dockerfile:

FROM: The image that we would use as a ground

MAINTAINER: The person who would be maintaining the image

COPY: Copy some files in the image

WORKDIR: The directory where you want to run your commands on

40

start

EXPOSE: Specify a port that you would like to access the container
on

41

Docker build

Now in order to build a new image from our Dockerfile, we need to
use the docker build command. The syntax of the docker build
command is the following:

docker build [OPTIONS] PATH | URL | -

The exact command that we need to run is this one:

docker build -f Dockerfile -t your_user_name/php-apache-dev .

After the built is complete you can list your images with the docker
images command and also run it:

docker run -d -p 8080:80 your_user_name/php-apache-dev

And again just like we did in the last step, we can go ahead and publish
our image:

docker login

docker push your-docker-user/name-of-image-here

Then you will be able to see your new image in your Docker Hub
account (https://hub.docker.com) you can pull from the hub directly:

docker pull your-docker-user/name-of-image-here

For more information on the docker build make sure to check out the

42

official documentation here:

https://docs.docker.com/engine/reference/commandline/build/

https://docs.docker.com/engine/reference/commandline/build/

43

Dockerfile Knowledge Check

Once you've read this post, make sure to test your knowledge with this
Dockerfile quiz:

https://quizapi.io/predefined-quizzes/basic-dockerfile-quiz

This is a really basic example, you could go above and beyond with
your Dockerfiles!

Now you know how to write a Dockerfile, how to build a new image from
a Dockerfile using the docker build command!

In the next step we will learn how to set up and work with the Docker
Swarm mode!

https://quizapi.io/predefined-quizzes/basic-dockerfile-quiz
https://quizapi.io/predefined-quizzes/basic-dockerfile-quiz
https://quizapi.io/predefined-quizzes/basic-dockerfile-quiz

44

Docker Network

Docker comes with a pluggable networking system. There are multiple
plugins that you could use by default:

bridge: The default Docker network driver. This is suitable for
standalone containers that need to communicate with each other.
host: This driver removes the network isolation between the
container and the host. This is suitable for standalone containers
which use the host network directly.
overlay: Overlay allows you to connect multiple Docker daemons.
This enables you to run Docker swarm services by allowing them to
communicate with each other.
none: Disables all networking.

In order to list the currently available Docker networks you can use the
following command:

docker network list

You would get the following output:

NETWORK ID NAME DRIVER SCOPE
3194399146e4 bridge bridge local
cf7f50175100 host host local
590fb3abc0e1 none null local

As you can see, we have 3 networks available out of the box already
with 3 of the network drivers that we've discussed above.

45

Creating a Docker network

To create a new Docker network with the default bridge driver you can
run the following command:

docker network create myNewNetwork

The above command would create a new network with the name of
myNewNetwork.

You can also specify a different driver by adding the --
driver=DRIVER_NAME flag.

If you want to create a Docker network with a specific range, you can
do that by adding the --subnet= flag followed by the subnet that you
want to use.

46

Inspecting a Docker network

In order to get some information for an existing Docker network like the
driver that is being used, the subnet, the containers attached to that
network, you can use the docker network inspect command as
follows:

docker network inspect myNewNetwork

The output of the command would be in JSON by default.

You can use the docker inspect command to inspect other Docker
objects like containers, images and etc.

47

Attaching containers to a network

To practice what you've just learned, let's create two containers and
add them to a Docker network so that they could communicate with
each other using their container names.

Here is a quick example of a bridge network:

First start by creating two containers:

docker run -d --name web1 -p 8001:80 eboraas/apache-php
docker run -d --name web2 -p 8002:80 eboraas/apache-php

It is very important to explicitly specify a name with --name for
your containers otherwise I've noticed that it would not work with the
random names that Docker assigns to your containers.

Once the two containers are up and running, create a new
network:

docker network create myNetwork

After that connect your containers to the network:

docker network connect myNetwork web1
docker network connect myNetwork web2

Check if your containers are part of the new network:

48

docker network inspect myNetwork

Then test the connection:

docker exec -ti web1 ping web2

Again, keep in mind that it is quite important to explicitly specify names
for your containers otherwise this would not work. I figured this out
after spending a few hours trying to figure it out.

For more information about the power of the Docker network, make
sure to check the official documentation here.

https://docs.docker.com/network/

49

What is Docker Swarm mode

According to the official Docker docs, a swarm is a group of machines
that are running Docker and joined into a cluster. If you are running a
Docker swarm your commands would be executed on a cluster by a
swarm manager. The machines in a swarm can be physical or virtual.
After joining a swarm, they are referred to as nodes. I would do a quick
demo shortly on my DigitalOcean account!

The Docker Swarm consists of manager nodes and worker nodes.

The manager nodes dispatch tasks to the worker nodes and on the
other side Worker nodes just execute those tasks. For High Availability,
it is recommended to have 3 or 5 manager nodes.

50

Docker Services

To deploy an application image when Docker Engine is in swarm mode,
you have create a service. A service is a group of containers of the
same image:tag. Services make it simple to scale your application.

In order to have Docker services, you must first have your Docker
swarm and nodes ready.

51

Building a Swarm

I'll do a really quick demo on how to build a Docker swarm with 3
managers and 3 workers.

For that I'm going to deploy 6 droplets on DigitalOcean:

Then once you've got that ready, install docker just as we did in the
Introduction to Docker Part 1 and then just follow the steps here:

Step 1

Initialize the docker swarm on your first manager node:

docker swarm init --advertise-addr your_dorplet_ip_here

Step 2

Then to get the command that you need to join the rest of the
managers simply run this:

https://devdojo.com/tutorials/introduction-to-docker-part-1

52

docker swarm join-token manager

Note: This would provide you with the exact command that you need to
run on the rest of the swarm manager nodes. Example:

Step 3

To get the command that you need for joining workers just run:

docker swarm join-token worker

The command for workers would be pretty similar to the command for
join managers but the token would be a bit different.

The output that you would get when joining a manager would look like
this:

53

Step 4

Then once you have your join commands, ssh to the rest of your
nodes and join them as workers and managers accordingly.

54

Managing the cluster

After you've run the join commands on all of your workers and
managers, in order to get some information for your cluster status you
could use these commands:

To list all of the available nodes run:

docker node ls

Note: This command can only be run from a swarm manager!Output:

To get information for the current state run:

docker info

Output:

55

56

Promote a worker to manager

To promote a worker to a manager run the following from one of your
manager nodes:

docker node promote node_id_here

Also note that each manager also acts as a worker, so from your docker
info output you should see 6 workers and 3 manager nodes.

57

Using Services

In order to create a service you need to use the following command:

docker service create --name bobby-web -p 80:80 --replicas 5
bobbyiliev/php-apache

Note that I already have my bobbyiliev/php-apache image pushed to
the Docker hub as described in the previous blog posts.

To get a list of your services run:

docker service ls

Output:

Then in order to get a list of the running containers you need to use the
following command:

docker services ps name_of_your_service_here

Output:

58

Then you can visit the IP address of any of your nodes and you should
be able to see the service! We can basically visit any node from the
swarm and we will still get the to service.

59

Scaling a service

We could try shutting down one of the nodes and see how the swarm
would automatically spin up a new process on another node so that it
matches the desired state of 5 replicas.

To do that go to your DigitalOcean control panel and hit the power off
button for one of your Droplets. Then head back to your terminal and
run:

docker services ps name_of_your_service_here

Output:

In the screenshot above, you can see how I've shutdown the droplet
called worker-2 and how the replica bobby-web.2 was instantly started
again on another node called worker-01 to match the desired state of 5
replicas.

To add more replicas run:

docker service scale name_of_your_service_here=7

Output:

60

This would automatically spin up 2 more containers, you can check this
with the docker service ps command:

docker service ps name_of_your_service_here

Then as a test try starting the node that we've shutdown and check if it
picked up any tasks?

Tip: Bringing new nodes to the cluster does not automatically distribute
running tasks.

61

Deleting a service

In order to delete a service, all you need to do is to run the following
command:

docker service rm name_of_your_service

Output:

Now you know how to initialize and scale a docker swarm cluster! For
more information make sure to go through the official Docker
documentation here.

https://docs.docker.com/engine/swarm/

62

Docker Swarm Knowledge Check

Once you've read this post, make sure to test your knowledge with this
Docker Swarm Quiz:

https://quizapi.io/predefined-quizzes/common-docker-swarm-interview-q
uestions

https://quizapi.io/predefined-quizzes/common-docker-swarm-interview-questions
https://quizapi.io/predefined-quizzes/common-docker-swarm-interview-questions
https://quizapi.io/predefined-quizzes/common-docker-swarm-interview-questions

63

Conclusion

Congratulations! You have just completed the Docker basics eBook! I
hope that it was helpful and you've managed to learn some cool new
things about Docker!

If you found this helpful, be sure to star the project on GitHub!

If you have any suggestions for improvements, make sure to contribute
pull requests or open issues.

In this introduction to Docker eBook, we just covered the basics, but
you still have enough under your belt to start working with Docker
containers and images!

As a next step make sure to spin up a few servers, install Docker and
play around with all of the commands that you've learnt from this
eBook!

In case that this eBook inspired you to contribute to some fantastic
open-source project, make sure to tweet about it and tag @bobbyiliev_
so that we could check it out!

Congrats again on completing this eBook!

https://github.com/bobbyiliev/introduction-to-docker-ebook
https://twitter.com

64

Other eBooks

Some other opensource eBooks that you might find helpful are:

Introduction to Git and GitHub
Introduction to Bash Scripting
Introduction to SQL

https://github.com/bobbyiliev/introduction-to-git-and-github-ebook
https://github.com/bobbyiliev/introduction-to-bash-scripting
https://github.com/bobbyiliev/introduction-to-sql

	Contents
	About the book
	About the author
	Sponsors
	Ebook PDF Generation Tool
	Book Cover
	License

	Introduction to Docker
	What is a container?
	What is a Docker image?
	What is Docker Hub?

	Installing Docker
	Working with Docker containers
	Pulling an image from Docker Hub
	Stopping and restarting a Docker Container
	Accessing a running container
	Deleting a container

	What are Docker Images
	Working with Docker images
	Modifying images ad-hoc
	Pushing images to Docker Hub
	Modifying images with Dockerfile
	Docker images Knowledge Check

	What is a Dockerfile
	Dockerfile example
	Docker build
	Dockerfile Knowledge Check

	Docker Network
	Creating a Docker network
	Inspecting a Docker network
	Attaching containers to a network

	What is Docker Swarm mode
	Docker Services
	Building a Swarm

	Managing the cluster
	Promote a worker to manager
	Using Services
	Scaling a service
	Deleting a service
	Docker Swarm Knowledge Check

	Conclusion
	Other eBooks

